\qquad Per. \qquad Date \qquad

Solving Equations Review - Part 2!

Equations with Absolute Value

- It is possible to get a positive value as a final answer when taking the absolute value of both positive and negative values.
- Therefore, to make the absolute value bars disappear, we have to set up two equations, one for the \qquad case and one for the \qquad case.

For example:

$$
|m-9|=4
$$

Because of the absolute value bars, the quantity m-9 could be equal to either \qquad or \qquad .

Solve it!

Set-Up \#1

Set-Up \#2

*Don't forget: If there is anything on the same side as the absolute value bars, we have to get rid of it first!

Now try this:

$$
|12-p|+4=9
$$

Now can you make an equation representing the solutions shown on this number line?

What about a word problem?
Martha runs an average of 5 miles per day, give or take a 2.5 miles. Write and solve an equation to find the maximum and minimum distances she runs.
\qquad Per. \qquad Date \qquad

Replacement Sets

***Key Idea: Plug 'n'chug! ${ }^{* * *}$

- With these problems, we are picking from a pool of numbers called the
\qquad -.
- We plug each one into the given equation to see if it makes the equation \qquad -.
- If it does, we include it in the collection of numbers called the \qquad .

For example:
Give the solution set for the equation $2 x+4=8$ for the replacement set $\{0,1,2,3\}$

A few important reminders:

- A number can only be included in a solution set if it is included in the
- A solution set doesn't always have to have just one value; it can have \qquad or even \qquad !

Feeling ready?! I'm sure you are! ©

